

Single Event Effects Accelerated Terrestrial Cosmic Rays on Ferroelectric RAM

Lindsay O'Brien Quarrie, Senior Member IEEE

<u>New Mexico Tech Microelectronics Testing and Technology Obsolescence</u> <u>Program (METTOP)</u>

Scott W. Teare, Senior Member IEEE

New Mexico Tech Department of Electrical Engineering

<u>This work has benefited from the use of Los Alamos Neutron Science Center</u> (LANSCE-WNR) Facility funded by the Department of Energy (DOE)

Objective

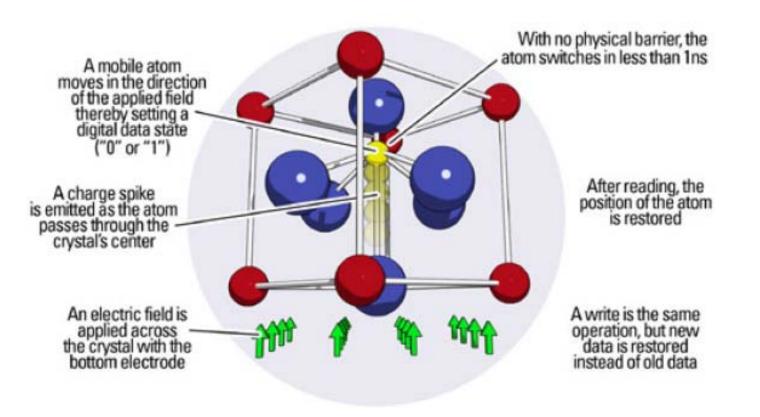
To assess 4 MB Ferroelectric RAM (FeRAM) Soft Error (SER) and Failure in Time (FIT) performance under: JEDEC 89 Accelerated Terrestrial Cosmic Radiation Environment- using LANSCE WNR Spectra.

Ferroelectric RAM (FeRAM)

FeRAM is currently one of several "advanced" non-volatile memory (NVRAM) technologies that are attempting to gain acceptance as an alternative to flash by avoiding its key weaknesses – high program and erase voltages, slow programming speed, write-erase endurance that is limited to ~105 cycles.

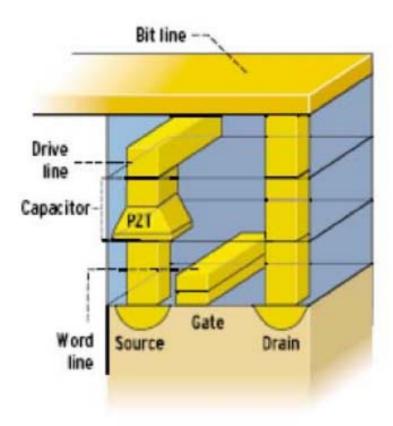
FRAM Advantages over Non-Volatile Memories

30,000 times faster than EEPROM 100,000 times higher endurance over EEPROM 200 times lower power consumption than EEPROM


Source: Ramtron International

The first commercially available Ferroelectric RAM Memories (4 MB) samples became available in March 2007.

Advanced Terrestrial Cosmic Ray Testing November 2007



Ferroelectric RAM (FeRAM) Technology Summary

Perovskite Ferroelectric Crystal

Capacitor containing PZT insulator.
1 or 0, ferroelectric domain points up/down.
Program-electric field between plates orients domain.
Read-bit and word lines turned on and short voltage pulse applied to capacitor thru drive line to create E-field.
If domain points in the same direction of the E-field a small current pulse appears on the bit line.
If domain points the opposite direction, a large current pulse occurs as the domains flips
Data is a 1 or 0, depending on whether the bit-line pulse is large or small.

SPECTRAL PURITY-COMPARISON OF DIFFERENTIAL NEUTRON FLUX NYC-LANSCE WNR MONOENERGETIC NEUTRONS

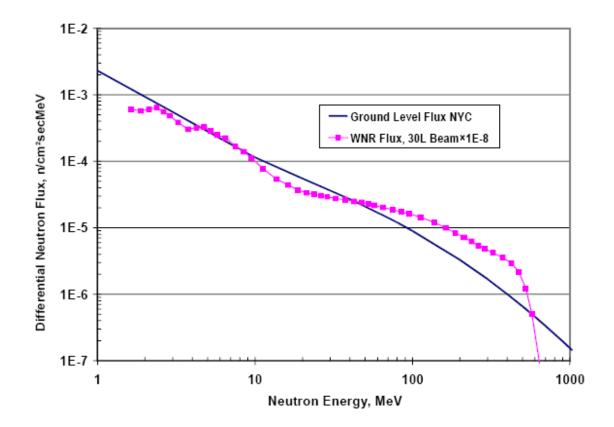
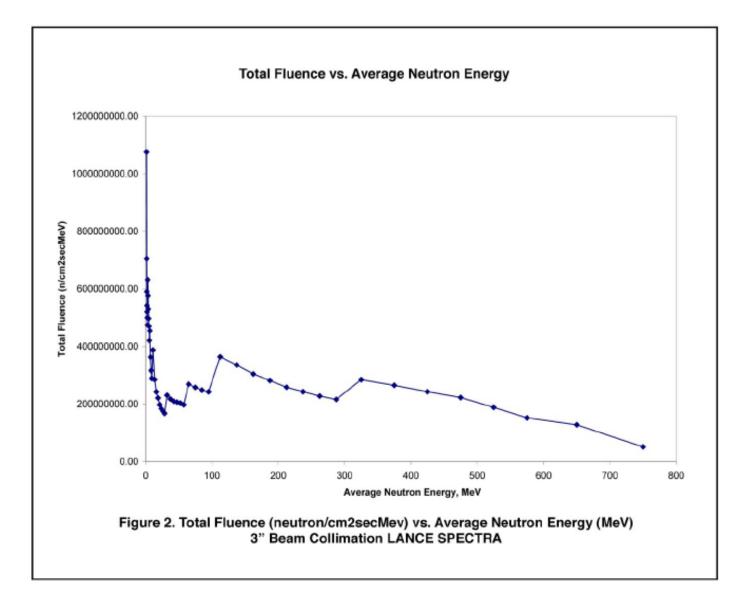
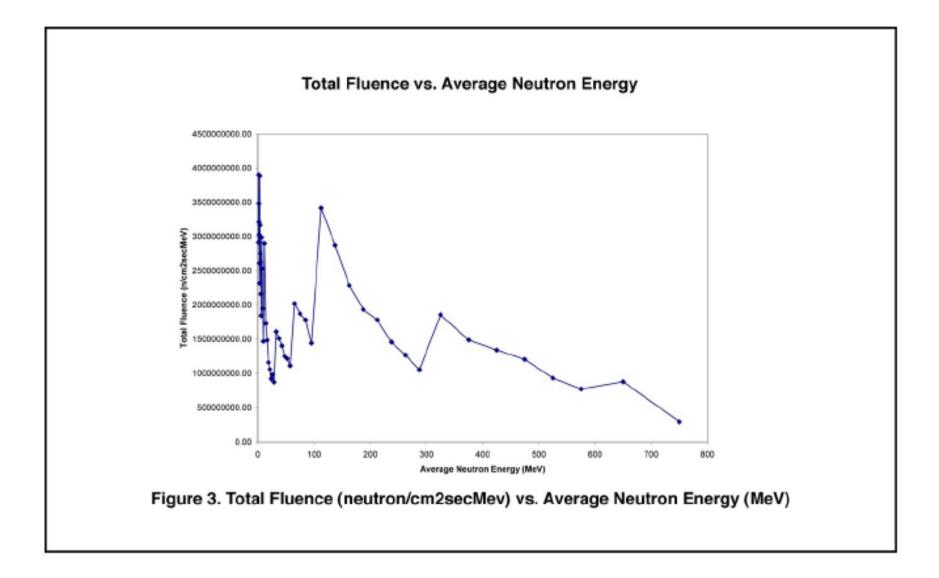
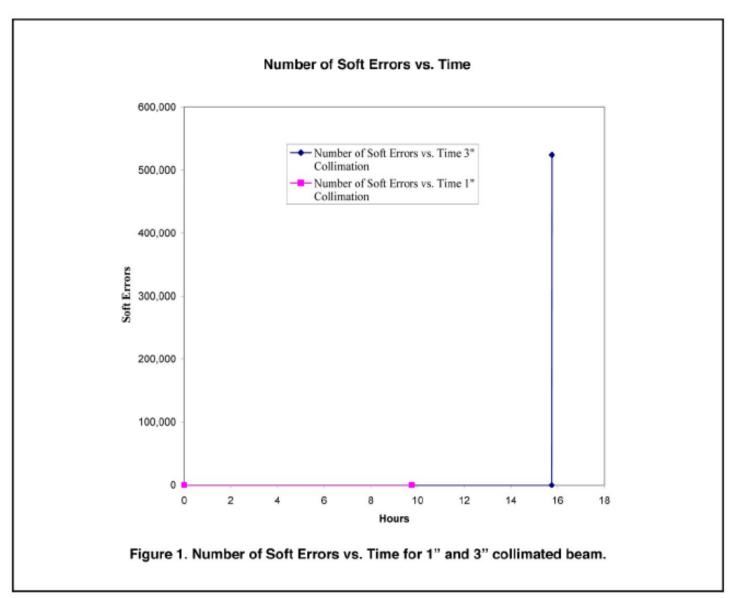




Figure 5.1 — Comparison of Differential Neutron Fluxes, in New York City, and in the WNR 30 Left beam (Reduced by Factor of 1E8) at LANL.


Total Fluence vs. Average Neutron Energy 3 cm Beam

Total Fluence vs. Average Neutron Energy 8 cm Beam

Single Event Effects Accelerated Terrestrial Cosmic Rays on Ferroelectric RAM

DEVICE RUN SUMMARY

DEVICE UNDER TEST: FM22L16 4 MB TSOP44 Ferroelectric RAM VDD= 0 Volts, Average Room Temperature= 25°C, # of Neutrons/ cm²/ pulse =1.7310.5 x 10⁴, # of Neutrons/ cm2 = 1.7310.5 x 104 * Neutron Pulse Count, Neutron Energy=LANSCE SPECTRA

Run	LOT	Beam	Start		Stop			
#	CODE	Time	Date	Time	Date	Time	Neutron	Neutron Flux
							Pulse	(neutrons/cm ²)
							Count	
1	0731	Beam Off	112707	12:09p	1127	12:19p	0	0
		10 min			2007			
2	0731	3 hrs 53	112707	12:25p	1127	4:18p	418,411	7.243 x 10 ⁹
		min			2007			
3	0731	15 hrs 45	112707	4:30p	1128	8:15a	1,716,470	2.97 x 10 ¹⁰
	(6 devices)	min			2007			
4	0731	Beam Off	112807	8:16a	1128	8:26a	0	0
		10 min			2007			

Table 1. Beam Run where soft errors were observed is highlighted.

Calculation of Soft Error Rate and FIT Estimation

Calculation of Soft Error Rate $^{2}SoftErrorRate = #ofBits \times \int_{\Omega} \sigma (E)F(E)dE$,

 $\sigma(E) = \frac{NumberofFails}{(NumberofNeutrons / cm2)^{*}(NumberofBits)}, \text{ where } \sigma(E) = \text{bit fail}$

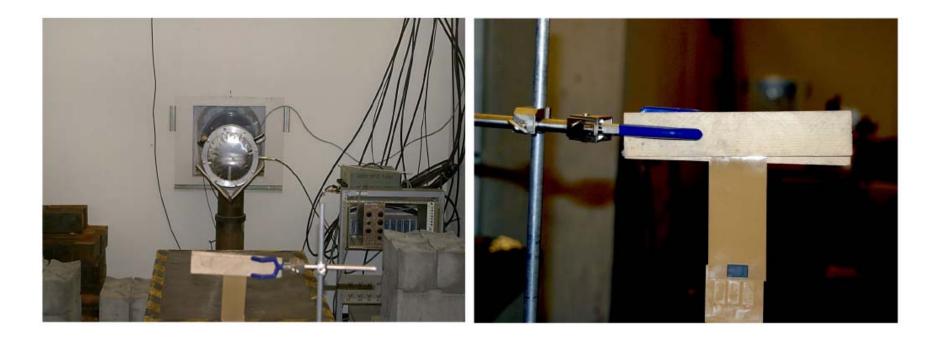
cross-section and F is the differential neutron flux as a function of neutron energy, E.

Failure rate estimation from accelerated testing at WNR:

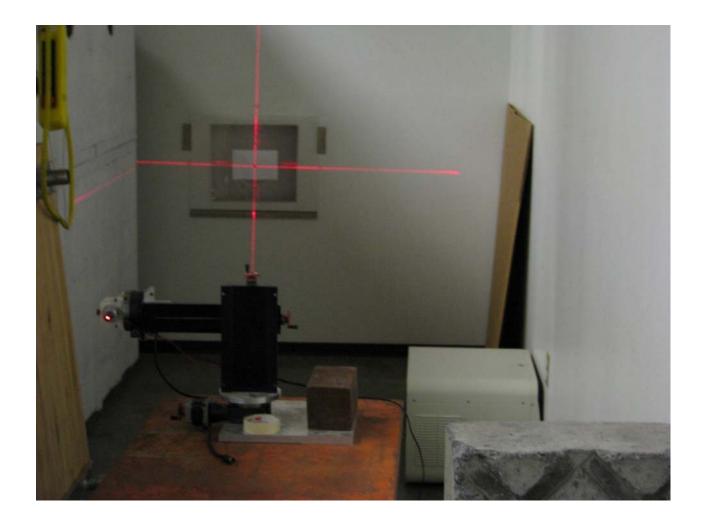
Assume in the terrestrial neutron environment, the neutron flux in the 1 - 10 MeV range, 4.0 x 10-3 n/cm²s (or 14.4 n/cm²h) is almost identical to the integral flux of all of the neutrons with energies above 10 MeV. 2 Thus, the terrestrial failure rate is estimated to be: Soft Error Rate, (SER) = $14 \times \sigma$ (E) × # bits (upset/h), where failure in Time (FIT) represents one failure in 109 (1 billion) device hours.

Table of SER & FIT

Calculation $\sigma(E)$,SER, FIT	# of Bits	# of fails	# bits (upset/h) [*]	# of hrs	SER	FIT
$\sigma(E) = 4.209 \text{ x } 10^{-12}$	4,194,304	524,288	33288	15.75	1.962 x 10 ⁻⁶	1962


Table 2. Values of SER, FIT.

LANSCE SPECTRA Testing Under Bias



LANSCE SPECTRA Testing w/o Bias

Beam Alignment

Conclusions

- The 4MB FM22L16 FeRAM operated normally without any soft errors under LANSCE SPECTRA for up to 15.75 hrs.
- There were no hard errors observed.
- The devices recovered their data after beam was removed.
- This experiment was a first of its kind for the 4MB FM22L16 FeRAM under Accelerated Terrestrial Cosmic Ray environment.
- Additional Testing Recommended form additional lots.

